GPU based Position Based Dynamics for Surgical
Simulators

Doga Demire]#*10000-0002-8270-1163] " Jason Smith?, Sinan Kockaral0000-0002-5881-1653] ' Tange]
Halice [0000-0002-2558-4001]

2Department of Computer Science, Florida Polytechnic University, Lakeland, Florida
"Department of Computer Science, Lamar University, Beaumont, Texas
“Intuitive Surgical, Atlanta, Georgia
*ddemirel@floridapoly.edu
jason@smith.software, skockara@lamar.edu,
Tansel.halic@intusurg.com

Abstract. Position Based Dynamics is the most popular approach for simulating
dynamic systems in computer graphics. However, volume rendering with linear
deformation times is still a challenge in virtual scenes. In this work, we imple-
mented Graphics Processing Unit (GPU)-based Position-Based Dynamics to iM-
STK, an open-source toolkit for rapid prototyping interactive multi-modal surgi-
cal simulation. We utilized NVIDIA’s CUDA toolkit for this implementation and
carried out vector calculations on GPU kernels while ensuring that threads do not
overwrite the data used in other calculations. We compared our results with an
available GPU-based Position-Based Dynamics solver. We gathered results on
two computers with different specifications using affordable GPUs. The vertex
(959 vertices) and tetrahedral mesh element (2591 elements) counts were kept
the same for all calculations. Our implementation was able to speed up physics
calculations by nearly 10x. For the size of 128x128, the CPU implementation
carried out physics calculations in 7900ms while our implementation carried out
the same physics calculations in 820ms.

Keywords: Position Based Dynamics, GPU

1 Introduction

Position Based Dynamics (PBD) is the most popular approach for simulating dynamic
systems in computer graphics [1]. Utilizing collision constraints to manipulate the po-
sitions of points in 3D space allows for simple physics calculations on large models [2].
Attempts to parallelize PBD saw specialized graphs and graph coloring to divide sets
of constraints into independent sections, which can provide calculation time decreases
of several orders of magnitude [3]. However, large and complex models are still com-
putationally expensive, even with graph coloring. Reduced models can somewhat solve
this problem by providing low dimensional copies of the model on which the PBD
calculations are run and then projected back to the higher quality, displayed model [4].

mailto:ddemirel@floridapoly.edu
mailto:jason@smith.software
mailto:skockara@lamar.edu

As complex PBD models allow for complicated constraints, calculations can be slow
on large models. In addition, specialized solvers can cause objects that would otherwise
interact with one another to pass through. Utilizing a unified solver function on particle-
based simulations allows many different substance types to interact [5].

Additionally, utilizing PBD provides excellent advantages when using volumetric
models, such as VEG files. These files already contain information used by the PBD
model, which allows modelers to define parameters for how the physics will affect their
models, such as hardness and bend constraints [6].

We implemented GPU-based Position Based Dynamics (PBD) to iMSTK, an open-
source toolkit for rapid prototyping interactive multi-modal surgical simulation, and
compared it with available GPU-based PBD solvers. As iMSTK was formerly only able
to do PBD calculations utilizing the CPU, it could not handle deforming large models
in real-time [4]. Using the vast multithreading ability of the GPU allows us to efficiently
manage significantly larger models with little to no performance impact.

Pan et al. [7] proposed a PBD-based Virtual Reality simulation framework for chol-
ecystectomy in the paper. The authors used graph coloring to solve PBD constraints in
parallel to satisfy organ deformations. For 22,650 tetrahedrons, they improved the time
cost per step from 28.51ms-29.10ms (PBD on CPU) to 12.20ms-12.35ms (parallel PBD
on GPU). Berndt et al. [8] proposed a PBD approach to simulate electrosurgery and
interactive cutting. This study uses PBD to model the objects and their dynamics used
in the surgery. Berndt et al. compared their PBD results with Pan et al. [9], where Pan
et al. used extended PBD to simulate soft bodies. For 2,385 and 4,079 elements, simu-
lation in [8] resulted in 4.2ms and 5.3ms, while [9] resulted in 8.1ms and 19.3ms, re-
spectively.

In [3], a CUDA-based PBD is implemented using graph coloring for interactive de-
formable bodies. In [3], for 16,000 particles (only quantitative result with stretch, bend,
and tetrahedral constraints), the average FPS for a single-core CPU was 15, while for a
multi-core CPU and GPU, the reported results were 45 and 326, respectively. However,
using graph coloring and solving with Gauss-Seidel [10] causes an imbalanced amount
of work for each kernel due to the number of constraints for each color being different.
Another work that utilizes Gauss-Seidel iteration with PBD is [12]. The study noted
that a model with =3,000 vertices would run with 7-8FPS on the CPU while the FPS
would increase to 42-43 on the GPU. In [11], authors introduced Vivace, a CUDA-
based PBD is implemented using graph coloring for interactive deformable bodies. For
30,000 vertices, 52,000 elements, and 150,000 constraints, the solver could run at 15ms
per frame. Due to the limited number of iterations, Vivace provides approximate re-
sults, which leads to artifacts.

2 Methods

Utilizing NVIDIA’s CUDA toolkit [13], we took the physics calculations that would
otherwise have been done on the CPU and moved these calculations to the GPU. As the
CUDA library does not support the standard library vectors, these values must be cop-
ied into individual arrays before being copied to the GPU. Once the data is on the GPU,

the vector calculations can be carried out utilizing GPU kernels which behave similarly
to the CPU calculations. However, special care was required to ensure that another
thread did not overwrite the data used in one calculation. Graph coloring cannot be
utilized because the GPU has much higher parallelization than the CPU. This was ac-
complished by allocating a second array and writing all the results into the second array.

Tasks sent to the GPU for calculation are split into blocks of threads. By adjusting
how many threads we want per block, we can control how the tasks are divided on the
GPU. As we are given access to the thread (7) and block number (B) in our kernels
(functions that run on the GPU), we can treat these values similarly to indexing using
2D coordinates (7 + B * width), where width is the block dimension. In addition, we
compare the mass of each point with DBLu» (the smallest number a double can repre-
sent that is greater than 0) to determine if we need to do any calculations.

In our velocity kernel (as seen in Table 1), we calculate the velocity by taking the
current position (P;) and subtracting the previous position (P:.1), then dividing that vec-
tor by the delta time (Af).

In the integration kernel (as seen in Table 2), we start by adding the gravity constant
and acceleration multiplied by Az. Then, we copy our coordinates for the next frame’s
velocity calculation (V). Finally, we update the position based on the velocity, delta
time, and viscous damping coefficient (VDC).

Table 1. GPU Velocity Kernel

i—T+B*width P Initialization
if |Mi|> DBLumin then
for all index ie M do

Vi< (Pi- Pi1)/ At P Calculate Velocity

Table 2. GPU Integration Kernel

i—T+B*width P Initialization
if |Mi|> DBLumin then

for all index ie M do

Vie— Vit (Ai +g) * Mt » Calculate Velocity using Accelera-

tion
P — P;

Pi—Pi+(1-VDC)* Vi * At

» Calculate Previous Position
» Update Position

3 Results

Our PBD implementation utilized NVIDIA’s CUDA, a General-Purpose Graphics Pro-
cessing Unit (GPGPU) library, which allows us to utilize graphical processing hardware
to do general-purpose computing tasks, in this case, PBD physics calculations.

Utilizing two different computers, we tested each of the different settings with dif-
ferent-sized models to determine which were most optimal and which number of
threads per block was optimal (as seen in Table 3 for hardware specifications).

Table 3. Hardware specifications for each computer

CPU: Intel 17 4790s
RAM: 16GB DDR3 a. PC #1
GPU: NVIDIA GTX 750
CPU: Xeon E-2144G

RAM: 16GB DDR4 b. PC#2
GPU: NVIDIA Quadro P2000

In addition to utilizing iMSTK, we tested using an open-source example project,
setting the number of particles to the same number as the iMSTK simulation. We uti-
lized Macklin et al. 's work [5] as a baseline for how fast we should expect our project
to run, quickly identifying if the hardware or software is the cause for any perceived
stutter or slowdown.

Time computation tests were performed first on PC #1, running CPU and GPU-based
tests (as seen in Fig. 1) while comparing the computation time in microseconds (us)
with different sizes, ranging from 8x8 to 128x128. Tests utilizing the GPU were split
into two categories, GPU with copy and GPU without a copy.

The results with copy included copying the data from the CPU to the GPU, doing
the calculations, and then copying the results back from the GPU to the CPU. This
shows the overhead of copying data through the PCle interface to which the GPU is
connected.

The results showed that the GPU without copy is faster than the CPU for larger sizes
(32x32, 64x64, and 128x128) but is slower for smaller sizes (8x8 and 16x16). The GPU
with copy is slower than the GPU without copy but still faster than the CPU for larger
sizes (64x64 and 128x128). However, the computation time on the CPU increases much
faster than GPU with data copy as the size increases.

For all sizes, our implementation on GPU with copy and GPU without copy showed
at least 2x improvement over the performance in the Macklin et al. example. At
128x128, our GPU implementation with data copy showed a 2.7x improvement over
Macklin et al.’s model and a 1.98x improvement over the CPU. For the same size, our
GPU implementation without data copy showed a 4.66x improvement over Macklin et
al.’s example and a 3.41x improvement over the CPU. When comparing GPU with and
without data copy, data copy overhead decreased the GPU performance by 0.57x to
0.62x.

m
=
[0}
S
|_

— =

8x8 16x16 32x32 64x64 128x128
Block Size
= CPU GPU with copy GPU without copy == Macklin et al.

Fig. 1. Timing results from PC #1

Next, the same suite of time computation tests was performed on PC #2 (as seen in
Fig 2). Similar to the results from PC#1, for PC #2, smaller sizes (8x8 and 16x16) CPU
outperformed the GPU with and without data copy, and Macklin et al.’s example. Com-
parable to PC #1, in PC#2, the CPU had the most significant increase in computation
time from 64x64 to 128x128 with 3.16x.

For Macklin et al. and GPU with data copy, the increase was 2.6x, while for GPU
without data copy, the increase was 2.65x. Unlike PC #1, in PC #2, Macklin et al.’s
example outperformed CPU at 128x128 by 17.7%, while at 64x64, the time computa-
tion results were equal at 2500 microseconds. For PC #1, at 64x64, CPU computation
results were 50% less than Macklin et al.’s example.

w
=2
)
£
|_.
8x8 16x16 32x32 64x64 128x128
Block Size
= CPU GPU with copy GPU without copy == Macklin et al.

Fig. 2. Timing results from PC #2

We tested our implementation (GPU without copy) with different block sizes and
threads per block (TPB). The results showed that, generally, the time taken to perform
the operation decreases as the block size and TPB increase. However, the differences
between 32 and 64 TPB were all less than 10%. The most considerable difference be-
tween 32 and 64 TPB was recorded for 8x8 block size at 8.5%. For the 32x32 block
size, 32 and 64 TPB performance was 240ps.

For comparison of 8 and 16 TPB, block sizes 64x64 and 128x128 had a performance
difference of 31.1% and 41.43%, respectively. The performance results for the smallest
block size of 8x8 were 210us for §TPB, 200us for 16TPB, 70us for 32TPB, and 64ps
for 64TPB. The performance results for the largest block size of 128x128 were 1400ps
for 8TPB, 820us for 16TPB, 570us for 32TPB, and 560us for 64TPB.

Time (us)

I
8x8 16x16 32x32 64x64 128x128
Block Size
== 8TPB 16 TPB 32TPB == 64TPB

Fig. 3. PC #2 performance for different block sizes and number of threads per block

Finally, tests were run on PC #2 to determine the effects of changing the number of
TPB, as seen in Fig 4. These tests utilized a volumetric dragon model of various sizes
and a source VEG (3D volumetric mesh) file [6]. The model had 959 vertices and 2,591
tetrahedral mesh elements, the counts were kept the same for all calculations.

The results indicate that the processing time decreases as the number of TPB in-
creases. One exception is the 128 TPB case (except for VEG File), where the processing
time increases. This is due to the overhead of managing a large number of threads. For
the VEG file, 128 TPB had the fastest performance at 16,000us, while 64 TPB was the
slowest at 30,500us.

It is also worth noting that the processing time increases as the block size increases.
This is likely because larger blocks require more processing power to handle a more
significant number of data points. For the model block size of 70x42x42, the fastest
TPB was 32 with 26,100us, while the slowest was the CPU with 253,000us.

200000
100000
80000
0
! 60000
£ 40000
=
20000
10000
8000 l
BTPB 16TPB 32TPB 64TPB 128TPB
Threads Per Block

B VEGFie [10x6x6 [20x12x12 [l 50x30x30 [70x42x42

Fig. 4. Timing results (PC #2) from testing showing increased performance when using CUDA.

Acknowledgments. This project was supported by grants from the National Institutes
of Health (NIH)/ NIBIB 1R01EB033674-01A1, SRO1EB025241-04, 3RO1EB005807-
09A1S1, and SRO1EB005807-10.

4 Conclusion

Volume rendering with linear deformation times is another challenge in virtual scenes.
PBD is the most popular approach for simulating dynamic systems in computer
graphics. We implemented GPU-based PBD to iMSTK, an open-source toolkit for
rapid prototyping interactive multi-modal surgical simulation, and compared it with
available GPU-based PBD solvers. We successfully showed that utilizing the GPU is
10x faster than using the CPU for the PBD calculations, as the GPU is optimized for
highly multithreaded workloads.

References

1. J. Bender, M. Miiller, and M. Macklin, “A survey on position-based dynamics, 2017,” Proc.
Eur. Assoc. Comput. Graph. Tutor., pp. 1-31, 2017.

2. M. Miiller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based dynamics,” J. Vis.
Commun. Image Represent., vol. 18, no. 2, pp. 109-118, 2007.

3. M. Fratarcangeli and F. Pellacini, “A gpu-based implementation of position based dynamics
for interactive deformable bodies,” J. Graph. Tools, vol. 17, no. 3, pp. 59-66, 2013.

10.

11.

12.

13.

J. Yan, S. Arikatla, and A. Wilson, “Fast deformation dynamics using model order reduction
in iIMSTK September 9, 2020

M. Macklin, M. Miiller, N. Chentanez, and T.-Y. Kim, “Unified particle physics for real-
time applications,” ACM Trans. Graph. TOG, vol. 33, no. 4, pp. 1-12, 2014.

F. S. Sin, D. Schroeder, and J. Barbi¢, “Vega: non-linear FEM deformable object simulator,”
in Computer Graphics Forum, 2013, vol. 32, no. 1, pp. 36-48.

J. Pan et al., “Real-time VR simulation of laparoscopic cholecystectomy based on parallel
position-based dynamics in GPU,” in 2020 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), 2020, pp. 548-556.

. L. Berndt, R. Torchelsen, and A. Maciel, “Efficient surgical cutting with position-based dy-

namics,” IEEE Comput. Graph. Appl., vol. 37, no. 3, pp. 24-31, 2017.

J. Pan, J. Bai, X. Zhao, A. Hao, and H. Qin, “Real-time haptic manipulation and cutting of
hybrid soft tissue models by extended position-based dynamics,” Comput. Animat. Virtual
Worlds, vol. 26, no. 3—4, pp. 321-335, 2015.

J. P. Milaszewicz, “Improving jacobi and gauss-seidel iterations,” Linear Algebra Its Appl.,
vol. 93, pp. 161-170, 1987.

M. Fratarcangeli, V. Tibaldo, and F. Pellacini, “Vivace: A practical gauss-seidel method for
stable soft body dynamics,” ACM Trans. Graph. TOG, vol. 35, no. 6, pp. 1-9, 2016.

O. Cetinaslan, “Position-Based Simulation of Elastic Models on the GPU with Energy
Aware Gauss-Seidel Algorithm,” in Computer Graphics Forum, 2019, vol. 38, no. §, pp. 41—
52.

M. Fatica, “CUDA toolkit and libraries,” in 2008 IEEE hot chips 20 symposium
(HCS), 2008, pp. 1-22.

