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Abstract. Position Based Dynamics is the most popular approach for simulating 
dynamic systems in computer graphics. However, volume rendering with linear 
deformation times is still a challenge in virtual scenes. In this work, we imple-
mented Graphics Processing Unit (GPU)-based Position-Based Dynamics to iM-
STK, an open-source toolkit for rapid prototyping interactive multi-modal surgi-
cal simulation. We utilized NVIDIA’s CUDA toolkit for this implementation and 
carried out vector calculations on GPU kernels while ensuring that threads do not 
overwrite the data used in other calculations. We compared our results with an 
available GPU-based Position-Based Dynamics solver. We gathered results on 
two computers with different specifications using affordable GPUs. The vertex 
(959 vertices) and tetrahedral mesh element (2591 elements) counts were kept 
the same for all calculations. Our implementation was able to speed up physics 
calculations by nearly 10x. For the size of 128x128, the CPU implementation 
carried out physics calculations in 7900ms while our implementation carried out 
the same physics calculations in 820ms. 

Keywords: Position Based Dynamics, GPU 

1 Introduction 

Position Based Dynamics (PBD) is the most popular approach for simulating dynamic 
systems in computer graphics [1]. Utilizing collision constraints to manipulate the po-
sitions of points in 3D space allows for simple physics calculations on large models [2]. 
Attempts to parallelize PBD saw specialized graphs and graph coloring to divide sets 
of constraints into independent sections, which can provide calculation time decreases 
of several orders of magnitude [3]. However, large and complex models are still com-
putationally expensive, even with graph coloring. Reduced models can somewhat solve 
this problem by providing low dimensional copies of the model on which the PBD 
calculations are run and then projected back to the higher quality, displayed model [4]. 
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As complex PBD models allow for complicated constraints, calculations can be slow 
on large models. In addition, specialized solvers can cause objects that would otherwise 
interact with one another to pass through. Utilizing a unified solver function on particle-
based simulations allows many different substance types to interact [5]. 

Additionally, utilizing PBD provides excellent advantages when using volumetric 
models, such as VEG files. These files already contain information used by the PBD 
model, which allows modelers to define parameters for how the physics will affect their 
models, such as hardness and bend constraints [6].  

We implemented GPU-based Position Based Dynamics (PBD) to iMSTK, an open-
source toolkit for rapid prototyping interactive multi-modal surgical simulation, and 
compared it with available GPU-based PBD solvers. As iMSTK was formerly only able 
to do PBD calculations utilizing the CPU, it could not handle deforming large models 
in real-time [4]. Using the vast multithreading ability of the GPU allows us to efficiently 
manage significantly larger models with little to no performance impact. 

Pan et al. [7] proposed a PBD-based Virtual Reality simulation framework for chol-
ecystectomy in the paper. The authors used graph coloring to solve PBD constraints in 
parallel to satisfy organ deformations. For 22,650 tetrahedrons, they improved the time 
cost per step from 28.51ms-29.10ms (PBD on CPU) to 12.20ms-12.35ms (parallel PBD 
on GPU). Berndt et al. [8] proposed a PBD approach to simulate electrosurgery and 
interactive cutting. This study uses PBD to model the objects and their dynamics used 
in the surgery. Berndt et al. compared their PBD results with Pan et al. [9], where Pan 
et al. used extended PBD to simulate soft bodies. For 2,385 and 4,079 elements, simu-
lation in [8] resulted in 4.2ms and 5.3ms, while [9] resulted in 8.1ms and 19.3ms, re-
spectively.  

In [3], a CUDA-based PBD is implemented using graph coloring for interactive de-
formable bodies. In [3], for 16,000 particles (only quantitative result with stretch, bend, 
and tetrahedral constraints), the average FPS for a single-core CPU was 15, while for a 
multi-core CPU and GPU, the reported results were 45 and 326, respectively. However, 
using graph coloring and solving with Gauss-Seidel [10] causes an imbalanced amount 
of work for each kernel due to the number of constraints for each color being different. 
Another work that utilizes Gauss-Seidel iteration with PBD is [12]. The study noted 
that a model with ≈3,000 vertices would run with 7-8FPS on the CPU while the FPS 
would increase to 42-43 on the GPU. In [11], authors introduced Vivace, a CUDA-
based PBD is implemented using graph coloring for interactive deformable bodies. For 
30,000 vertices, 52,000 elements, and 150,000 constraints, the solver could run at 15ms 
per frame. Due to the limited number of iterations, Vivace provides approximate re-
sults, which leads to artifacts. 

2 Methods 

Utilizing NVIDIA’s CUDA toolkit [13], we took the physics calculations that would 
otherwise have been done on the CPU and moved these calculations to the GPU. As the 
CUDA library does not support the standard library vectors, these values must be cop-
ied into individual arrays before being copied to the GPU. Once the data is on the GPU, 



3 

the vector calculations can be carried out utilizing GPU kernels which behave similarly 
to the CPU calculations. However, special care was required to ensure that another 
thread did not overwrite the data used in one calculation. Graph coloring cannot be 
utilized because the GPU has much higher parallelization than the CPU. This was ac-
complished by allocating a second array and writing all the results into the second array. 

Tasks sent to the GPU for calculation are split into blocks of threads. By adjusting 
how many threads we want per block, we can control how the tasks are divided on the 
GPU. As we are given access to the thread (T) and block number (B) in our kernels 
(functions that run on the GPU), we can treat these values similarly to indexing using 
2D coordinates (T + B * width), where width is the block dimension. In addition, we 
compare the mass of each point with DBLmin (the smallest number a double can repre-
sent that is greater than 0) to determine if we need to do any calculations. 

In our velocity kernel (as seen in Table 1), we calculate the velocity by taking the 
current position (Pi) and subtracting the previous position (Pi-1), then dividing that vec-
tor by the delta time (Dt). 

In the integration kernel (as seen in Table 2), we start by adding the gravity constant 
and acceleration multiplied by Dt. Then, we copy our coordinates for the next frame’s 
velocity calculation (Vi). Finally, we update the position based on the velocity, delta 
time, and viscous damping coefficient	(VDC).	

Table 1. GPU Velocity Kernel 

i←T+B*width 

if |Mi|> DBLmin then 
    for all index iÎ M do 

          Vi ← (Pi - Pi-1)/ Dt  

►Initialization 
 
 
►Calculate Velocity 
 

Table 2. GPU Integration Kernel 

i←T+B*width 

if |Mi|> DBLmin then 

    for all index iÎ M do 

          Vi ← Vi + (Ai + g) * Dt  
          Pi-1 ← Pi  

          Pi ← Pi + (1 – VDC) * Vi * Dt  

►Initialization 
 
 
►Calculate Velocity using Accelera-

tion 
►Calculate Previous Position 
►Update Position 
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3 Results 

Our PBD implementation utilized NVIDIA’s CUDA, a General-Purpose Graphics Pro-
cessing Unit (GPGPU) library, which allows us to utilize graphical processing hardware 
to do general-purpose computing tasks, in this case, PBD physics calculations. 

Utilizing two different computers, we tested each of the different settings with dif-
ferent-sized models to determine which were most optimal and which number of 
threads per block was optimal (as seen in Table 3 for hardware specifications). 

Table 3. Hardware specifications for each computer 

CPU: Intel i7 4790s 
RAM: 16GB DDR3 
GPU: NVIDIA GTX 750 

a. PC #1 

CPU: Xeon E-2144G 
RAM: 16GB DDR4 
GPU: NVIDIA Quadro P2000 

b. PC #2 

 
In addition to utilizing iMSTK, we tested using an open-source example project, 

setting the number of particles to the same number as the iMSTK simulation. We uti-
lized Macklin et al. 's work [5] as a baseline for how fast we should expect our project 
to run, quickly identifying if the hardware or software is the cause for any perceived 
stutter or slowdown.  

Time computation tests were performed first on PC #1, running CPU and GPU-based 
tests (as seen in Fig. 1) while comparing the computation time in microseconds (μs) 
with different sizes, ranging from 8x8 to 128x128. Tests utilizing the GPU were split 
into two categories, GPU with copy and GPU without a copy.  

The results with copy included copying the data from the CPU to the GPU, doing 
the calculations, and then copying the results back from the GPU to the CPU. This 
shows the overhead of copying data through the PCIe interface to which the GPU is 
connected.  

The results showed that the GPU without copy is faster than the CPU for larger sizes 
(32x32, 64x64, and 128x128) but is slower for smaller sizes (8x8 and 16x16). The GPU 
with copy is slower than the GPU without copy but still faster than the CPU for larger 
sizes (64x64 and 128x128). However, the computation time on the CPU increases much 
faster than GPU with data copy as the size increases. 

For all sizes, our implementation on GPU with copy and GPU without copy showed 
at least 2x improvement over the performance in the Macklin et al. example. At 
128x128, our GPU implementation with data copy showed a 2.7x improvement over 
Macklin et al.’s model and a 1.98x improvement over the CPU. For the same size, our 
GPU implementation without data copy showed a 4.66x improvement over Macklin et 
al.’s example and a 3.41x improvement over the CPU. When comparing GPU with and 
without data copy, data copy overhead decreased the GPU performance by 0.57x to 
0.62x. 
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Fig. 1. Timing results from PC #1 

Next, the same suite of time computation tests was performed on PC #2 (as seen in 
Fig 2). Similar to the results from PC#1, for PC #2, smaller sizes (8x8 and 16x16) CPU 
outperformed the GPU with and without data copy, and Macklin et al.’s example. Com-
parable to PC #1, in PC#2, the CPU had the most significant increase in computation 
time from 64x64 to 128x128 with 3.16x.  

For Macklin et al. and GPU with data copy, the increase was 2.6x, while for GPU 
without data copy, the increase was 2.65x. Unlike PC #1, in PC #2, Macklin et al.’s 
example outperformed CPU at 128x128 by 17.7%, while at 64x64, the time computa-
tion results were equal at 2500 microseconds. For PC #1, at 64x64, CPU computation 
results were 50% less than Macklin et al.’s example. 
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Fig. 2. Timing results from PC #2 

We tested our implementation (GPU without copy) with different block sizes and 
threads per block (TPB). The results showed that, generally, the time taken to perform 
the operation decreases as the block size and TPB increase. However, the differences 
between 32 and 64 TPB were all less than 10%. The most considerable difference be-
tween 32 and 64 TPB was recorded for 8x8 block size at 8.5%. For the 32x32 block 
size, 32 and 64 TPB performance was 240μs. 

For comparison of 8 and 16 TPB, block sizes 64x64 and 128x128 had a performance 
difference of 31.1% and 41.43%, respectively. The performance results for the smallest 
block size of 8x8 were 210μs for 8TPB, 200μs for 16TPB, 70μs for 32TPB, and 64μs 
for 64TPB. The performance results for the largest block size of 128x128 were 1400μs 
for 8TPB, 820μs for 16TPB, 570μs for 32TPB, and 560μs for 64TPB. 
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Fig. 3. PC #2 performance for different block sizes and number of threads per block 

Finally, tests were run on PC #2 to determine the effects of changing the number of 
TPB, as seen in Fig 4. These tests utilized a volumetric dragon model of various sizes 
and a source VEG (3D volumetric mesh) file [6]. The model had 959 vertices and 2,591 
tetrahedral mesh elements, the counts were kept the same for all calculations. 

The results indicate that the processing time decreases as the number of TPB in-
creases. One exception is the 128 TPB case (except for VEG File), where the processing 
time increases. This is due to the overhead of managing a large number of threads. For 
the VEG file, 128 TPB had the fastest performance at 16,000μs, while 64 TPB was the 
slowest at 30,500μs.  

It is also worth noting that the processing time increases as the block size increases. 
This is likely because larger blocks require more processing power to handle a more 
significant number of data points. For the model block size of 70x42x42, the fastest 
TPB was 32 with 26,100μs, while the slowest was the CPU with 253,000μs. 
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Fig. 4. Timing results (PC #2) from testing showing increased performance when using CUDA. 
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4 Conclusion 

Volume rendering with linear deformation times is another challenge in virtual scenes. 
PBD is the most popular approach for simulating dynamic systems in computer 
graphics. We implemented GPU-based PBD to iMSTK, an open-source toolkit for 
rapid prototyping interactive multi-modal surgical simulation, and compared it with 
available GPU-based PBD solvers. We successfully showed that utilizing the GPU is 
10x faster than using the CPU for the PBD calculations, as the GPU is optimized for 
highly multithreaded workloads. 
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